1. (12%) Determine the following limit. $f(x)$ (3%) $\frac{x^2+2x-3}{x^2+4}$ x^2-1 **(b)** $(3\%) \frac{x^2-4}{|x-2|}$ $|x-2|$

(c)
$$
(3\%) \frac{3}{1+\frac{2}{x}}
$$

(d) $(3\%) \frac{\cos(\pi x)}{x+1}$

Ans:

(a)
$$
\frac{x^2+2x-3}{x^2-1} = \frac{(x+3)(x-1)}{(x+1)(x-1)} = \frac{(x+3)}{(x+1)} = 2
$$

\n(b)
$$
\lim_{x \to 2^+} \frac{x^2-4}{x-2} = \lim_{x \to 2^+} x + 2 = 4
$$
 and
$$
\lim_{x \to 2^-} \frac{x^2-4}{-(x-2)} = \lim_{x \to 2^-} -(x+2) = -4
$$
Therefore, the limit does not exist.
\n(c)
$$
\frac{3}{1+\frac{2}{x}} = \frac{3}{\frac{x+2}{x}} = \frac{3x}{x+2} = 0
$$

\n(d) Since $\frac{-1}{x+1} \le \frac{\cos(\pi x)}{x+1} \le \frac{1}{x+1}$ and $\frac{1}{x+1} = 0 = \frac{-1}{x+1}$. By the squeeze theorem, $\frac{\cos(\pi x)}{x+1} = 0$.
\n2. (6%)
\nIf $f(x)$ and $g(x)$ are both continuous function with $[3f(x) + g(x)] = 4$ and $[f(x) - 2g(x)] = 6$. Find
\n(a) (2%) $f(x)$ (b) (2%) $g(2)$ (c) (2%) $f(x)g(x)$
\nAns:
\nSince $f(x)$ and $g(x)$ are continuous at $x = 2$, we have:
\n $f(x) = f(2)$ and $g(x) = g(2)$
\nFrom the given limits, let $L = f(2)$ and $M = g(2)$

$$
3L + M = 4, L - 2M = 6 \rightarrow L = 2, M = -2
$$

(a) $f(x) = L = 2$ (b) $q(2) = M = -2$ (c) $f(x)g(x) = -4$

3. (10%) Let $f(x) = \{sin(3x) \text{ for } x \leq 0 \text{ } mx \text{ for } x > 0$ (a) (5%) Find all values of m that make f continuous at 0 **(b)** (5%) Find all the values of m that make f differentiable at 0 **Ans:** (a) $f(x) = 0 = f(x) \rightarrow$ m can be any real number. (b) Considering the alternative form of derivative: $\lim_{x\to 0^-}$ $f(x) - f(0)$ $\frac{f(z)}{x-0} = \lim_{x \to 0^-}$ $sin(3x)$ $\frac{(-1)^{n}}{x} = \lim_{x \to 0^{-}}$ $3sin(3x)$ $3x$ $= 3 \lim_{t \to 0^-}$ $sin(t)$ t $\lim_{x\to 0^+}$ $f(x) - f(0)$ $x - 0$ $=$ $\lim_{x\to 0^+}$ mx $\boldsymbol{\chi}$ $=$ m

Since it is differentiable, we have $m = 3$

4. (5%) If $f(x) = x^2 + 2x - 3$, use the definition of the derivative of a function to compute $f'(x)$

 $=$ 3

Ans:

$$
f'(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 + 2(x + \Delta x) - 3 - (x^2 + 2x - 3)}{\Delta x}
$$

=
$$
\lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2 + 2\Delta x}{\Delta x} = \lim_{\Delta x \to 0} 2x + \Delta x + 2 = 2x + 2
$$

5. (5%) Verify that $f(x) = x^3 + 2x + 4$ satisfies the hypotheses of the Mean Value Theorem on [−1,1]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

Ans:

The function $f(x) = x^3 + 2x + 4$ is a polynomial function. Polynomial functions are continuous everywhere on R, including the closed interval $[-1,1]$. Again, since $f(x)$ is a polynomial function, it is differentiable everywhere on *, including the open* interval (−1,1). Therefore, the hypotheses of the Mean Value Theorem are satisfied. $f(1) = 7, f(-1) = 1$

In addition, $f'(x) = 3x^2 + 2$ By MVT, we have $f'(c) = \frac{f(1)-f(-1)}{1-(1)}$ $\frac{(1)-f(-1)}{1-(-1)}$ = 3 → 3 c^2 + 2 = 3 → 3 c^2 = 1 → $c = \pm \frac{\sqrt{3}}{3}$ 3 Both of them lies in (-1,1). Therefore, $c = \pm \frac{\sqrt{3}}{2}$ $\frac{13}{3}$

- 6. (12%)
- (a) (5%) Find the equation of the tangent line to the graph of $f(x) = \frac{x+8}{\sqrt{2x+6}}$ $\frac{x+6}{\sqrt{3x+1}}$ at the point $(0,8)$
- **(b)** (3%) Use chain rule to find the derivative of $g(x) = \sin(2x^2 + 3\cos(x))$
- (c) (4%) Use implicit differentiation to find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ of the expression 2xy – $1 = 3x + y^2$

Ans:

(a)
$$
f'(x) = \frac{(3x+1)^{\frac{1}{2}}(1)-(x+8)^{\frac{1}{2}}(3x+1)^{-\frac{1}{2}}(3)}{3x+1}
$$

\n $f'(0) = \frac{1-4(3)}{1} = -11$. The tangent line is $y - 8 = -11(x - 0) \rightarrow y = -11x + 8$
\n(b) $g'(x) = \cos(2x^2 + 3\cos(x)) \times (4x - 3\sin \sin(x))$
\n(c) Differentiate both side with respect to x, we have

$$
2y + 2x \frac{dy}{dx} = 3 + 2y \frac{dy}{dx} \rightarrow \frac{dy}{dx} = \frac{3 - 2y}{2x - 2y}
$$

$$
\frac{d^2y}{dx^2} = \frac{-2\frac{dy}{dx}(2x - 2y) - 2(3 - 2y)(1 - \frac{dy}{dx})}{4(x - y)^2} = \frac{(-4x + 6)\frac{dy}{dx} + (4y - 6)}{4(x - y)^2}
$$

$$
= \frac{(-4x + 6)\left(\frac{3 - 2y}{2x - 2y}\right) + (4y - 6)}{4(x - y)^2} = \frac{-12x + 8xy + 9 - 4y^2}{4(x - y)^3}
$$

- 7. (20%) Let $f(x) = \frac{x^4 + x^2 + 4x}{x}$ \mathcal{X}
- (a) (4%) Find the critical points and possible points of inflection for $f(x)$
- **(b)** (3%) Find the open intervals on which $f(x)$ is increasing or decreasing
- **(c)** (3%) Find the open intervals of concavity for $f(x)$
- **(d)** (4%) Find all asymptotes of $f(x)$
- **(e)** (6%) Sketch the graph of $f(x)$, labeling intercepts, relative extrema, points of inflection, and asymptotes.

Ans: Note that the original function is undefined at $x = 0$, therefore we should include it in the following table.

$$
f(x) = x3 + x + 4, x \ne 0, f'(x) = 3x2 + 1 > 0
$$

f''(x) = 6x

- (a) Note that x is not define at $x = 0$, we should not include it in the critical numbers or possible points of inflection There is no critical numbers $(f' = 0)$ There is no possible points of inflection $(f'' = 0)$
- (b) Increasing (−∞, 0), (0, ∞).
- (c) Upward: (0, ∞). Downward (−∞, 0)
- (d) Since $f(x) = +\infty \to$ No horizontal asymptote. No vertical asymptote since $f(x)$ is undefined at $x = 0$
- (e) Graph

There is no relative extrema or point of inflection. No y intercept

Using Newton's method or bisection method, we have x intercept roughly equals -1.38. (Other approximation methods are also acceptable, like trial and error)

- 8. (8%)
	- (a) (4%) Find the point on the graph $y = \sqrt{x-8}$ that is closest to the point (12,0).
- **(b)** (4%) Use Newton's method with the initial approximation $x_1 = -1$ to find x_3 , the third approximation to the solution of the equation $2x^3 - 3x^2 + 2 = 0$

Ans:

(a) The distance between (12,0) and a point (x, y) on the graph of $\sqrt{x - 8}$ is $d = \sqrt{(x-12)^2 + y^2} = \sqrt{(x-12)^2 + x - 8}$ Minimize $d^2 = f(x) = (x - 12)^2 + x - 8$. Note that $f'(x) = 2(x - 12) + 1 =$ $2x - 23$. The only critical point is $x = \frac{23}{3}$ $\frac{23}{2}$. When $x = \frac{23}{2}$ $\frac{23}{2}$, $y = \sqrt{\frac{7}{2}}$ $\frac{7}{2}$, $d = \frac{\sqrt{15}}{2}$ $\frac{13}{2}$. Therefore, $x = \frac{23}{3}$ $\frac{25}{2}$ is relative minimum (Testing the critical number using First Derivative Test). Therefore, the closest point is $\left(\frac{23}{2}, \sqrt{\frac{7}{2}}\right)$ $\frac{1}{2}$).

(b) Newton's Method iteratively improves an estimate x_n of a root of a function $f(x)$ using the formula:

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$

$$
f'(x) = 6x^2 - 6x
$$

9. (8%) Use differentials to approximate $\sqrt{1 + \sin(0.01)}$

Ans: Let
$$
f(x) = \sqrt{1 + \sin(x)}
$$
, $f'(x) = \frac{\cos(x)}{2\sqrt{1 + \sin(x)}}$
\n $f(x + \Delta x) \approx f(x) + f'(x)dx = \sqrt{1 + \sin(x)} + \frac{\cos(x)}{2\sqrt{1 + \sin(x)}}dx$
\nChoosing $x = 0$ and $dx = 0.01$.
\n $f(x + \Delta x) = \sqrt{1 + \sin(0.01)} \approx \sqrt{1 + \sin \sin(0)} + \frac{\cos \cos(0)}{2\sqrt{1 + \sin \sin(0)}}0.01$
\n $= 1 + \frac{0.01}{2} = 1.005$

10. (14%) Solve the following problems
\n**(a)** (7%) Evaluate
$$
\int \frac{3}{\sqrt[3]{x}} + x^2 + 2dx
$$

\n**(b)** (7%) Find $\frac{1}{n} \left[\sqrt{\frac{n^2 - 1^2}{n^2}} + \sqrt{\frac{n^2 - 2^2}{n^2}} + \sqrt{\frac{n^2 - 3^2}{n^2}} + \dots + \sqrt{\frac{n^2 - n^2}{n^2}} \right]$

Ans:

(a)
$$
\int \frac{3}{\sqrt[3]{x}} + x^2 + 2 dx = \int 3x^{\frac{-1}{3}} + x^2 + 2 dx = \frac{9}{2}x^{\frac{2}{3}} + \frac{1}{3}x^3 + 2x + C
$$

\n(b)
$$
\left[\frac{\sqrt{n^2 - 1^2}}{n^2} + \frac{\sqrt{n^2 - 2^2}}{n^2} + \frac{\sqrt{n^2 - 3^2}}{n^2} + \dots + \frac{\sqrt{n^2 - n^2}}{n^2} \right] = \sum_{k=1}^n \frac{\sqrt{n^2 - k^2}}{n^2} = \sum_{k=1}^n \frac{1}{n} \sqrt{1 - \left(\frac{k}{n}\right)^2} = \int_0^1 \sqrt{1 - x^2} dx = \frac{\pi}{4}
$$